我們來實踐一個具體的例子:熱狗識別。將基于一個小數(shù)據(jù)集對在ImageNet數(shù)據(jù)集上訓(xùn)練好的ResNet模型進行微調(diào)。該小數(shù)據(jù)集含有數(shù)千張熱狗或者其他事物的圖像。我們將使用微調(diào)得到的模型來識別一張圖像中是否包含熱狗。查看全文>>
兩個變量的二元分布可視化也很有用。在 Seaborn中最簡單的方法是使用 jointplot()函數(shù),該函數(shù)可以創(chuàng)建一個多面板圖形,比如散點圖、二維直方圖、核密度估計等,以顯示兩個變量之間的雙變量關(guān)系及每個變量在單坐標軸上的單變量分布。查看全文>>
ChatGPT是最近網(wǎng)絡(luò)上非?;鸬娜斯ぶ悄芰奶鞕C器人,有人把ChatGPT比作是一個高級版的百科全書,你去問它問題,它會把答案直接告訴你,有點像百度的語音搜索功能,而且省去了搜的環(huán)節(jié)。查看全文>>
在NLP領(lǐng)域, HMM用來解決文本序列標注問題. 如分詞, 詞性標注, 命名實體識別都可以看作是序列標注問題。同HMM一樣, CRF一般也以文本序列數(shù)據(jù)為輸入, 以該序列對應(yīng)的隱含序列為輸出。查看全文>>
圖像分類實質(zhì)上就是從給定的類別集合中為圖像分配對應(yīng)標簽的任務(wù)。也就是說我們的任務(wù)是分析一個輸入圖像并返回一個該圖像類別的標簽。假定類別集為categories = {dog, cat, panda},之后我們提供一張圖片給分類模型,如下圖所示:查看全文>>
YOLO系列算法是一類典型的one-stage目標檢測算法,其利用anchor box將分類與目標定位的回歸問題結(jié)合起來,從而做到了高效、靈活和泛化性能好,所以在工業(yè)界也十分受歡迎,接下來我們介紹YOLO 系列算法。查看全文>>